Algebra: Variable and Functions

Use a function table to find values for the function, \(y = 5 + x \).

- Replace \(x \) in the function rule with values for \(x \) from the first column of the function table. Then solve the rule for \(y \).
- Remember: In a function table, there is exactly one entry in the second column (\(y \)) for every entry in the first column (\(x \)).
- For the function rule, \(y = 5 + x \):
 - If \(x = 1 \), then \(y = 5 + 1 = 6 \).
 - If \(x = 2 \), then \(y = 5 + 2 = 7 \).
 - If \(x = 3 \), then \(y = 5 + 3 = 8 \).
 - If \(x = 4 \), then \(y = 5 + 4 = 9 \).

Function Table

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Copy and complete each function table.

1. \(y = 14 - x \)

\[
\begin{array}{c|c}
\hline
\(x \) & \(y \) \\
\hline
0 & _ _ \\
1 & _ _ \\
2 & _ _ \\
3 & _ _ \\
\hline
\end{array}
\]

2. \(y = 7x \)

\[
\begin{array}{c|c}
\hline
\(x \) & \(y \) \\
\hline
0 & _ _ \\
1 & _ _ \\
2 & _ _ \\
3 & _ _ \\
\hline
\end{array}
\]

3. \(y = 36 \div x \)

\[
\begin{array}{c|c}
\hline
\(x \) & \(y \) \\
\hline
1 & _ _ \\
2 & _ _ \\
3 & _ _ \\
4 & _ _ \\
\hline
\end{array}
\]

Problem Solving

4. There are 8 servings in one bag of popcorn. Make a function table to show how many servings are in 2, 3, 4, and 5 bags of popcorn.

Show Your Work