Compare Expressions

Use what you have learned about addition, subtraction, multiplication, and division of fractions and comparing fractions and mixed numbers to compare the expressions. Write >, <, or =.

1. \(\frac{3}{4} \div \frac{1}{2} \) \> \(\frac{6}{8} + \frac{7}{8} \)

2. \(\frac{4}{5} \times \frac{5}{8} \) \> \(\frac{8}{10} - \frac{2}{5} \)

3. \(\frac{7}{10} \div \frac{1}{2} \) \> \(\frac{3}{5} \) of 2

4. \(\frac{3}{8} + \frac{1}{4} \) \> \(\frac{2}{3} \div \frac{5}{6} \)

5. \(\frac{1}{9} \div \frac{2}{3} \) \> \(\frac{1}{3} \times \frac{1}{2} \)

6. \(\frac{7}{8} \div \frac{3}{5} \) \> \(\frac{3}{5} \div \frac{7}{8} \)

7. \(\frac{1}{2} \) of \(\frac{4}{9} \) \> \(\frac{2}{5} \div \frac{2}{3} \)

8. \(\frac{3}{10} + \frac{1}{2} \) \> \(\frac{3}{8} \div \frac{1}{4} \)

9. \(\frac{5}{8} \div \frac{5}{6} \) \> \(\frac{4}{5} \div \frac{1}{6} \)

10. \(\frac{3}{4} \times \frac{3}{5} \) \> \(\frac{1}{3} \div \frac{9}{10} \)

11. \(\frac{7}{10} \times \frac{5}{8} \) \> \(\frac{3}{8} \times \frac{7}{12} \)

12. \(\frac{2}{5} \div \frac{8}{9} \) \> \(\frac{1}{4} \div \frac{7}{8} \)

13. \(\frac{5}{8} \div \frac{4}{5} \) \> \(\frac{2}{3} \times \frac{1}{4} \)

14. \(\frac{2}{3} + \frac{5}{9} \) \> \(\frac{3}{4} \div \frac{1}{3} \)

15. List the expressions with sums, differences, products, or quotients greater than 1.

16. Analyze It Look at the division expressions you wrote in exercise 15. What generalization can you make about the size of a quotient in relation to the sizes of fractional dividends and divisors? Do you think the opposite is true? Explain.

Compare Expressions

Use what you have learned about addition, subtraction, multiplication, and division of fractions and comparing fractions and mixed numbers to compare the expressions. Write $>$, $<$, or \leq.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{3}{4} \div \frac{1}{2}$</td>
<td>$\leq \frac{3}{2}$</td>
</tr>
<tr>
<td>$\frac{7}{10} \div \frac{1}{2}$</td>
<td>$> \frac{3}{5}$ of 2</td>
</tr>
<tr>
<td>$\frac{1}{9} \div \frac{2}{3}$</td>
<td>$= \frac{1}{3} \times \frac{1}{2}$</td>
</tr>
<tr>
<td>$\frac{1}{2}$ of $\frac{4}{9}$</td>
<td>$< \frac{2}{5} \div \frac{2}{3}$</td>
</tr>
<tr>
<td>$\frac{5}{8} \div \frac{5}{6}$</td>
<td>$< \frac{4}{5} \div \frac{1}{6}$</td>
</tr>
<tr>
<td>$\frac{7}{10} \times \frac{5}{8}$</td>
<td>$> \frac{3}{8} \times \frac{7}{12}$</td>
</tr>
<tr>
<td>$\frac{5}{8} \div \frac{4}{5}$</td>
<td>$> \frac{2}{3} \times \frac{1}{4}$</td>
</tr>
</tbody>
</table>

15. List the expressions with sums, differences, products, or quotients greater than 1.

$\frac{3}{4} \div \frac{1}{6} + \frac{7}{8}, \frac{7}{10} \div \frac{1}{2}, \frac{3}{2}, \frac{5}{8} \times \frac{7}{12}, \frac{7}{8} \div \frac{3}{5}, \frac{3}{8} \div \frac{1}{4}, \frac{4}{5} \div \frac{1}{6}, \frac{2}{3} + \frac{5}{9}, \frac{3}{4} \div \frac{1}{3}$

16. Analyze It

Look at the division expressions you wrote in exercise 15. What generalization can you make about the size of a quotient in relation to the sizes of fractional dividends and divisors? Do you think the opposite is true? Explain.

Sample response: When the dividend is greater than the divisor, the quotient is greater than 1. I think the opposite is true. When the dividend is less than the divisor, the quotient is less than 1.