Add it Up

Copy the game board on the right onto another sheet of paper so that the spaces are twice as large. Choose two different colored markers and a number cube.

Each player takes turns rolling the game cube twice. After the first roll, move the amount of spaces shown and mark that space on the game board. Roll again and mark the next space. Add the two mixed numbers from each of your rolls.

If your answer is wrong, move back to the space where you started your turn. If your answer is right, stay in the second space until your next turn. If the two numbers add up to a whole number, you get to take another turn.

The first player to reach the end wins.

Play the game and answer each problem.

1. On the first turn, what is the only combination of numbers that makes a whole number? What is the whole number?

2. If you are on 1 2/7 (7th square) and you roll a 6 and a 3, how many different paths could you choose from? How many of those paths would earn you another turn?

3. If you are on 3 1/2 (upper right-hand corner), is it possible to win without having the other player take a turn? If you say yes, tell how you would do it.
Add it Up

Copy the game board on the right onto another sheet of paper so that the spaces are twice as large. Choose two different colored markers and a number cube.

Each player takes turns rolling the game cube twice. After the first roll, move the amount of spaces shown and mark that space on the game board. Roll again and mark the next space. Add the two mixed numbers from each of your rolls.

If your answer is wrong, move back to the space where you started your turn. If your answer is right, stay in the second space until your next turn. If the two numbers add up to a whole number, you get to take another turn.

The first player to reach the end wins.

Play the game and answer each problem.

1. On the first turn, what is the only combination of numbers that makes a whole number? What is the whole number?
 Rolling a 4 (4\(\frac{1}{2}\)) and then a 1 (1\(\frac{1}{2}\)); whole number is 6.

2. If you are on 1\(\frac{3}{4}\) (7th square) and you roll a 6 and a 3, how many different paths could you choose from? How many of those paths would earn you another turn?
 four; two

3. If you are on 3\(\frac{1}{2}\) (upper right-hand corner), is it possible to win without having the other player take a turn? If you say yes, tell how you would do it.
 Yes; 2, 1 (to 4\(\frac{1}{4}\)); 1, 4 (to 3\(\frac{1}{6}\)); 5, 1 (to 1\(\frac{2}{5}\)); Then any combination that adds up to at least 9.