Answer each question.

1. Fill in the blanks to describe using multiplication this sheet of animal stickers.

\[
\begin{array}{c}
\uparrow \\
\text{number of rows} \\
\uparrow \\
\text{number in each row} \\
\uparrow \\
\text{total number}
\end{array}
\times
\begin{array}{c}
\uparrow \\
\text{number of rows} \\
\uparrow \\
\text{number in each row} \\
\uparrow \\
\text{total number}
\end{array} =
\begin{array}{c}
\uparrow \\
\text{number of rows} \\
\uparrow \\
\text{number in each row} \\
\uparrow \\
\text{total number}
\end{array}
\]

2. Fill in the blanks to describe the same sheet of animal stickers with division in two ways.

\[
\begin{array}{c}
\uparrow \\
\text{total number} \\
\uparrow \\
\text{number of rows} \\
\uparrow \\
\text{number in each row}
\end{array}
\div
\begin{array}{c}
\uparrow \\
\text{total number} \\
\uparrow \\
\text{number in each row} \\
\uparrow \\
\text{number of rows}
\end{array} =
\begin{array}{c}
\uparrow \\
\text{total number} \\
\uparrow \\
\text{number of rows} \\
\uparrow \\
\text{number in each row}
\end{array}
\]

3. Write 4 different multiplication and division sentences using the numbers 3, 9, and 27.

4. If an array shows a square number, how many multiplication and division sentences can describe the array?

5. Write a division sentence modeled by an array that has 2 more rows than the number in each row.

6. Mary says that the greater the number of counters, the greater the number of different arrays you can form. Give an example that shows that Mary is wrong.

